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OVERVIEW 2010  
OF ARL PROGRAM ON NETWORK SCIENCE 

FOR HUMAN DECISION MAKING  
 

BRUCE J. WEST 
Information Science Directorate, US Army Research Office 

Durham, NC, 27709 

The Army Research Laboratory program on the Network Science of 
Human Decision Making brings together researchers from a variety of 
disciplines to work on a complex research problem that defies 
confinement within any single discipline. Consequently, new and 
rewarding solutions have been obtained for a problem of importance to 
society and the Army, that being, the human dimension of complex 
networks. This program investigates the basic research foundation of a 
science of networks supporting the linkage between the cognitive and 
social domains as they relate to human decision making. The research 
strategy extends recent methods of non-equilibrium statistical physics 
to non-stationary, renewal stochastic processes characteristic of the 
interactions among nodes in complex networks. The theoretical 
analyses of complex networks, although mathematically rigorous, often 
elude analytic solutions and require simulation and computation to 
analyze the underlying dynamic process. The information transfer 
between two complex networks is calculated using the Principle of 
Complexity Management (PCM) as well as direct numerical calculation 
of the decision making model (DMM) developed within the project. 

 

1.   Introduction 

The modern world is an interconnected mesh of networks 

satisfying a myriad of functions: transportation, electrical power, 

food distribution, finance, and health care to name a few. The 
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interoperability of these networks developed as part of urban 

evolution over the past century such that these and other webs 

connect to national and/or global networks [1]. This is the 

engineered webbing of humanity, but there are comparable natural 

structures in the spheres of biology, ecology, sociology and 

physiology. 

          This modernity is manifest in the military through the 

development of Network-Centric Warfare (NCW) which takes 

cognizance of human behavior in a networked environment of 

organized actions directed toward political, social and military 

ends and is the basis of a new theory of war [2,3]. Thus, NCW has 

at its core a shift in focus from military platforms such as ships and 

tanks to networks having platforms as members. Army scientists 

need to understand the dynamics, controllability and predictability 

of generic nonlinear complex networks in order to realize their 

goal of supporting both society and the soldier through research 

and the development of new technologies. 

           It is not only our external world that is cluttered with 

networks, but our internal world as well. The neuronal network 

carrying the brain’s signal to the body’s physiological networks is 

even more complex than the modern city or a typical ecological 

network. Thus, the basic research into network science must span 

and encompass a multitude of disciplines; understanding each 

shedds light on the others. 
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           The problem addressed within this program is to develop 

the basic research foundation of a science of networks that 

supports the linkage between the cognitive and social domains as 

they relate to decision making. This approach is not directed at the 

totality of developing a Network Science, but has the more modest 

goal of understanding the deeply interdependent human networks 

of crucial importance to society as a whole and to the Army in 

particular. Even such a restricted problem is a significant challenge 

due to the multiply interconnecting networks buttressing the 

common decision making objective. 

           On the one hand, the military is proactive in that networked 

forces can operate in an agile manner to promote decision-making 

superiority. On the other hand, the Army is reactive in the need to 

respond to enemies who are also using the power of networks 

against United States interests. The research program provides 

insight to allow the Army to anticipate the enemy’s use of network 

strategy and thereby reduce the reactive mode of operation. In [4] 

we reviewed what is presently known about complex networks, 

regardless of the disciplinary context and adapted that 

understanding to the decision-making paradigm. Moreover, the 

barriers to further understanding and to filling the gaps in 

knowledge of the linkages between social and human decision-

making networks were addressed. 
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           The research strategy of the ARL program is based on 

theory, computation/simulation and experiment/observation. This 

is a cyclic interactive process in which new theory stimulates 

unique simulations, yielding insight into parameter values and 

network configurations, which in turn suggests specific 

experiments, whose outcome guides the refinement and 

development of theory. This modern approach to scientific 

research is applied to the phenomenon of human decision-making 

with a view for eventual application to NCW. The core group of 

Army scientists is the focal point for external researchers requiring 

militarily relevant challenges and internal ARL efforts. 

        One of the mysteries of human social interaction is how 

agreements are reached and cooperative alliances are made. 

Individuals become part of social groups or networks in a number 

of ways: choice, peer pressure and subliminal seduction; but 

always through a sequence of decisions, either conscious or not. 

Network characteristics cannot be deduced from the properties of 

individuals; they emerge during the formation and growth of the 

network. Consequently we need mathematics to quantify the 

strength of the interactions between the network components, as 

well as to describe how a network develops in time and responds 

to perturbations (stimulation). This has been done through the 

construction of the decision-making model (DMM) that for very 

weak coupling is much like the Ising model of cooperative 



 5

behavior, but for strong coupling can be very different [5]; see [4] 

for an overview. 

          Ubiquitous aspects of complex networks are the appearance 

of non-stationary, non-ergodic, and renewal statistical processes. 

These properties are manifest through inverse power-law statistical 

distributions that not only challenge traditional understanding of 

complexity in physical networks, but require new strategies for 

understanding how information is exchanged between networks 

[6,7], as in the case of interest here among human networks 

including cognitive networks. The approach is to adapt the 

methods of non-equilibrium statistical physics that have been used 

to characterize the dynamics of complex phenomena and phase 

transitions. These methods were extended to the study of such 

social phenomena as linguistics, biofeedback techniques and the 

brain’s response to music [8] and to further develop them to model 

decision-making with incomplete information in an uncertain 

environment.  

           The research into decision making has been addressed using 

a variety of strategies. The mathematics of complex networks has 

been examined using the newly developed DMM to understand 

consensus [5]; a psychophysical model of how individuals make 

decision and then irrationally change their minds shows agreement 

between theory and experiments [9]; renewal statistics reveal how 

we habituate to the familiar [10] and forget the uninteresting [11]; 
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1/f variability captures how the brain processes tasks of increasing 

complexity during decision making [12]; and finally we have 

determined how all these various pieces fit into the overall picture 

of exchanging information between complex networks [4,6,7].  

        The major accomplishment of the present research program 

has been the identification of the first universal principle in the 

science of networks, that being, the Principle of Complexity 

Management (PCM) discussed in [4,7]. PCM states that the 

maximum information is exchanged between two complex 

networks when there is compatibility of the complexity of the two 

networks. A mathematical proof of this principle has been 

constructed over the past year [13,14].  

2.   Principle of Complexity Management 

       The mathematician Norbert Wiener speculated that the 

transfer of influence from a complex network high in information 

to one low in information even though the latter may be higher in 

energy represents a new kind of interaction [15], which we called 

Wiener’s Rule [4]. His insight was vindicated a half century later 

[13,14] and required the generalization of a number of concepts 

from statistical physics [16,17] resulting in the Principle of 

Complexity Management [6,7] as we discussed last year [4]. 

        One measure of the information content of a network is 

provided by the probability density most often used in the 
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determination of the negative entropy of Shannon and Wiener. An 

apparently ubiquitous distribution in the description of empirical 

complex networks is the hyperbolic, having the survival 

probability:  

                        Ψ(t) =
T μ−1

T + t( )μ−1      ,                                              (1) 

which asymptotically becomes an inverse power law. The average 

time between events in complex webs such as power grid 

blackouts, heartbeats, time between earthquakes [7] of a given 

magnitude can be determined using the probability density 

ψ(t)=−dΨ(t)/dt, to be  

          t = tψ(t)dt
0

∞

∫ =
T

μ − 2
;   μ > 2  ergodic

 ∞; μ > 2  non ergodic

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
                           (2) 

It is interesting that when the power-law index is in the interval 

2<µ<3 the distribution has a finite first moment and the statistics 

are ergodic, meaning that the time average and ensemble averages 

yield the same result. However when the power-law index is µ<2 

there are no finite integer moments and the time and ensemble 

averages are not the same, that is, the process is non-ergodic. We 

shall have more to say about non-ergodicity subsequently.  

One measure of the information transfer between two 

complex networks is the cross-correlation between a complex 

network P and a complex network S being perturbed by P with ε 
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the strength of the perturbation. For our purposes it is sufficient to 

apply the generalized linear response theory [13,14] we previously 

developed to the normalized cross-correlation function: 

( ) ')',()'()'()(

0

dttttttRtCt ps

t

x Ψ−Ψ=≡Φ ∫ε
 .                                    (3) 

The perturbing complex network P is characterized by the non-

stationary autocorrelation function )',( ttpΨ , which depends 

separately on the time of the last perturbation t’ and time of the 

measurement t. The function Rs(t’) is the rate of generating 

perturbing events at time t’ within the network being perturbed and 

is based on renewal theory [7]. The perturbed network S is 

characterized by the stationary autocorrelation function )'( tts −Ψ , 

which depends only on the difference in times from the last 

perturbation to the measurement.    

In Figure 1 the asymptotic cross-correlation function 

normalized to the strength of the perturbation is graphed as a 

function of the power-law indices of the two networks to form a 

cross-correlation cube. The cube displays a number of remarkable 

properties: 1) when the power-law indices are both equal to two 

there is an abrupt jump from zero correlation in region II to perfect 

consensus in region III; 2) the upper plateau region III indicates 

that when P is non-ergodic 1<µp<2 and S is ergodic 2<µs<3 there 

is an information response in which the perturbed network tracks 
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the perturbing network exactly and the information transfer is 

maximal; 3) when P is ergodic 2<µp<3 and S is non-ergodic 

1<µs<2 there is no response asymptotically and the information 

transfer is minimal as shown in region II. How a complex network 

responds to a perturbation by another complex network is 

determined by the kind of mismatch that exists in the complexity 

of the fluctuations in the two networks.  

 

Figure 1: The cross-correlation cube. The asymptotic cross-
correlation function defined by Eq. (3) is graphed as a function of 
the two power-law indices of the perturbed network S and the 
perturbing network P. [From [7] with permission.] 

 

Wiener’s Rule describes the influence of the perturbing 

network outside the lower plateau region of the cross-correlation 

cube. In all regions except this one the weak perturbation 
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significantly modifies the properties of the complex network 

being perturbed. In the upper plateau region the perturbation by 

network P actually dominates the properties of the perturbed 

network S and reorganizes it, just as Wiener anticipated. The PCM 

embodied in the cross-correlation cube therefore subsumes 

Wiener’s Rule as we reviewed in [6].  In addition we showed the 

application of PCM to the phenomenon of habituation and other 

activities involving the human brain. 

3.   Synchronization and information exchange 

Aquino et al. [14] observe that the growing interest in the 

dynamics of complex networks is shifting research attention from 

the synchronization of two stochastic units [18] to the 

synchronization of large numbers of units [19], an interesting 

phenomenon that is closely related to the very popular model of 

Kuramoto [20]. The single units of the processes of chaos 

synchronization are chaotic and they surprisingly synchronize 

while maintaining the erratic dynamics that they have in isolation. 

Although the single units of the Kuramoto model are regular, it is 

becoming increasingly evident that the emergence of a global 

synchronization is a condition independent of whether the single 

units are regular or stochastic. The single units of the work of [21, 

22] are Poisson processes and if one of them drives the other, they 

would obey the principle of aperiodic stochastic resonance [23]. If 
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the two units are bi-directionally coupled they are expected to 

undergo a condition of perfect synchronization if the coupling is 

sufficiently intense. When the number of interacting units is very 

large a phase transition occurs from the non-cooperative to the 

cooperative behavior [21, 22]. 

          It is important to stress that at criticality no permanent 

consensus is reached, and the mean value of the global field 

vanishes. Yet, this condition is strikingly different from the non-

cooperative condition. The whole network remains in the “yes” 

(“no”) state for an extended time before making a transition to the 

“no” (“yes”) state. 

          It is surprising that the phase-transition literature seems to 

have overlooked, with only a few exceptions [21, 22, 24], that the 

transitions from the “yes” (“no”) to the “no” (“yes”) state 

occurring at criticality are the “crucial” events defined in Section I 

of [14]. In other words, the time interval between two consecutive 

transitions is derived from a pdf that has the asymptotic time 

structure of Eq. (1) with a power index μ fitting the inequality 

condition 1<µ<3. Some authors [21, 22] argue that μ = 1.5 and 

others, [25], releasing the condition that all the units share the 

same Poisson rate, generate a global condition with crucial events 

characterized by μ < 2, but significantly departing from the value μ 

= 1.5. Note that the theoretical arguments of [5], yield the 
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misleading impression that the crucial value of μ is a 

consequence of ordinary statistical physics 

          An important result of [14] is the discovery of a promising 

road to settle the problem of information transmission from one to 

another complex network. In fact, if the inner synchronization 

corresponds to a criticality condition and criticality generates 

crucial events with a power-law index in the interval 1<μ<3, then a 

complex network at criticality is a generator of 1/f noise, with a 

power spectrum S(f) 1 ן/f3−μ. Thus, the problem of information 

transmission from one to another complex network becomes 

equivalent to the phenomenon of 1/f resonance illustrated in [14].  

          Aquino et al. [14] distinguish between a phenomenological 

and dynamic linear response theory (LRT). The experiments 

[27,28] support the dynamical rather than the phenomenological 

LRT. It is important to stress that phenomenological LRT is a 

natural consequence of adopting the asymptotic time perspective 

replacing the waiting-times pdf ψ(τ) of Eq. (1) with ψ(τ) 1 ן/τμ. 

This way of proceeding, although generating the elegant 

mathematics of fractional derivatives, has as an ultimate effect the 

misleading discovery of the death of linear response. We do not 

adopt the asymptotic time perspective but the special form of Eq. 

(1). This is not a unique way of connecting the longtime to the 

short-time regime. However, whatever form we adopt we are 

convinced that there will be a parameter corresponding to the 
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parameter T of Eq. (1). It is reasonable to assume that an external 

perturbation may perturb either T or μ, or both. However, the 

perturbation of μ is incompatible with the assumption of a weak 

stimulus. In fact, μ is a consequence of the cooperation among the 

units of the network, and a perturbation may affect μ only if its 

strength is large enough to influence the interaction among the 

units of the network. Thus, an external weak perturbation can only 

have an effect on T, thereby making the dynamical LRT become 

the proper way to study the response of a complex network to a 

weak external stimulus, in accordance with the experimental 

results [27,28]. 

          For these reasons, we can conclude that Fig. 1 is an original, 

and important, result of this research program. We hope that the 

application of the PCM may open the door to solving the problem 

of information transmission from one complex network to another, 

a research topic that is still in its infancy. 

4.   Decision making model (DMM) and phase transitions 

In order to better understand the transfer of information between 

complex networks last year we numerically analyzing networks 

consisting of a large number of nonlinearly interacting nodes. The 

properties of the DMM developed by Turalska et al. [5] using a 

master equation formalism [22] were discussed where each 
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element of the network is a two state oscillator and is described 

by a master equation of the form 

 
dp1(t)

dt
= −g12(t) p1(t) + g21p2(t)

dp2(t)
dt

= −g21(t) p2(t) + g12 p1(t)

 ,                                                     (4)  

 
and pj(t) is the probability of being in the state j = ±1; p1+p2=1. 

The coupling functions are time-independent for non-interacting 

members of the network.  

             Subsequently, we considered a network consisting of L 

discrete variables located at the nodes of a two-dimensional square 

lattice. Each unit si is a stochastic oscillator and can be found in 

either of the above two states. For the dynamic complex lattice 

each element si interacts with each of its nearest neighbors and is 

updated in an elementary time step with transition rate g:  

                g12 = g(si
+1 → si

−1) = g0 exp K
M

M+1 − M−1( )
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥                        (5) 

Here M is the total number of nearest neighbors; M+1 and M-1 are 

the number nearest neighbors that have made the decision “yes” 

and “no”, respectively. The single individual changes opinion, and 

as a consequence these numbers are variables fluctuating in time, 

while the total number of elements is constant. When K>0 a unit 

who is in the state “yes” (“no”) makes a transition to the state “no” 
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(“yes”) faster or slower according to whether the majority of the 

elements are in the state “no” (“yes”) or “yes” (“no”), respectively. 

             Turalska et al. [22] do all calculations on a L×L lattice 

with periodic boundary conditions. They characterize the network 

in terms of the global order parameter 

                     ( ) ∑
=

=
L

j
js

L
t

1

1ξ  ,                                                             (6) 

whose variability is not dichotomous. In Figure 2 an example of 

the temporal evolution for a single unit is compared with that of 

the global order parameter.  

          Note that the amplitude of the global order parameter 

depends on the value of the coupling constant K. When K=0, 

single units of the network are independent. When K>0, single 

units are less and less independent, resulting in a non-zero average. 

The quantity Kc is the critical value of the control parameter K, at 

which point a phase transition to a global majority state occurs. In 

numerical calculations they use the time average ( )teq ξξ ≡ as a 

measure of the global majority. More precisely after an initial 

million time steps, which is sufficient time to suppress any 

transients, an average is taken over the same number of 

consecutive time steps in the DMM. 
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Figure 2: (a) Temporal evolution of a single unit and (b) of the 
global order parameter for the DMM realized on a square lattice 
with L=50, g0=0.01 and K=1.70. Notice the different time scales 
on the two plots. [From [22] with permission] 
 
                They find that in the special case when M is the same for all 

the nodes and g0<<1, that DMM generates the same kind of phase 

transition as is observed in the two-dimensional Ising model 

discussed in Onsager’s seminal paper [29]. The phase transition for 

the global variable ξeq is indicated in Figure 3 under various 

conditions. It is evident that the DMM phase transition on a lattice 

is only equivalent to the Ising model under very restricted 

conditions. The apparent equivalence between the Ising and DM 

models is merely formal, since the DMM does not have a 

Hamiltonian origin and its elements are not in contact with a 

thermal bath [22]. These differences explain why the equivalence 
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requires the transition rate to vanish, so as to freeze the dynamics 

of the single units, in the absence of cooperation. 

 
Figure 3: The phase diagram for the global variable ξeq. The thin 
solid line and dashed line are theoretical predictions for the fully 
connected and two-dimensional regular networks, respectively. In 
both cases L=∞ and the latter case is the Onsager prediction for a 
2D regular lattice. The thick solid line corresponds to the global 
states observed for a 2D regular lattice with L=100 and g0=0.01. 
Periodic boundary conditions were applied. [From [22] with 
permission] 
 
            When the transition rate assumes a finite value the 

equivalence between DMM and the Ising model is lost. Turalska et 

al. [22] investigate the parameter phase space to determine the 

domain of phase transitions and find that they can occur for values 

of K below that of the theoretical Kc. There is also a situation for 

relative high transition rates in which every unit is surrounded by 
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nearest neighbors in the opposite state, yielding an update of its 

state at every time step and generating the condition in which the 

order parameter is exactly zero at all times. 

 

 
Figure 4: Survival probability function Ψ(τ) for the global order 
parameter evaluated on a 2D lattice with L=50, g0=0.01 and 
increasing values of the coupling constant K. The straight line 
corresponds to a slope of -0.50, namely µ=1.5 since 

. [From [22] with permission.] ( ) 1/1 −∝Ψ μττ
 
          Turalska et al. [22] conjecture that the crossings of the 

origin by the global order parameter are the significant events to 

observe. As illustrated in Figure 2 they interpret the time interval τ 

between two consecutive crossings as the time duration of a given 

decision, even if this decision may rest on a slight and fluctuating 

majority. They evaluate the distribution density of decision-time 
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duration τ, ψ(τ), and the corresponding survival probability Ψ(τ), 

where  

                 .                                                              (7) ( ) ( )∫
∞

=Ψ
t

dt ττψ

Although emerging from a simple regular lattice, that is, one with 

no structural complexity, the survival probability presented in 

Figure 4 shows a scale-free property that extends over more than 

four orders of magnitude in time for cKK ≈ . A further increase in 

the coupling strength does not affect the power-law region. 

5.    Conclusions 

          Wiener’s Rule maintains that a network with high 

information can organize one with low information. For example a 

tightly coupled organization, with rules and policies to cover all 

contingencies, changes little over time and therefore is low in 

information. CPM quantifies Wiener’s Rule by introducing a 

measure of complexity allowing us to compare the level of 

information in interacting complex networks. This measure is 

determined by the power-law index of the hyperbolic distribution 

and a generalization of LRT enabled us to construct the cross-

correlation cube to determine the degree of asymptotic influence 

one network has on another. In this way the 1/f variability of 

stimuli is found to resonate with the human brain [12], as when we 

are entranced by music or irritated by a dripping faucet [4,7].           
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